Faculty Disclosure

Sumeet K. Mittal, MD

Dr. Mittal has listed no financial interest/arrangement that would be considered a conflict of interest.
Mesh Related Complications of Hiatus Hernia Repair

Sumeet K. Mittal, MD, FACS
Associate Professor of Surgery
Director, Esophageal Center,
Creighton University School of Medicine
Omaha, NE
1. HH do recur. ? True Incidence
2. Most are asymptomatic and do not require repair.
3. Use of Mesh does not eliminate recurrence.
4. Mesh causes problems.
 a. Complications
 b. Difficulty in re-operative intervention.
5. All re-operative interventions are not for recurrent HH.
Recurrence After Paraesophageal Hernia Repair in Series With Complete Radiologic Follow-up

- 551 Patients
 - Group 1 (N=335) March 1998- July 2002
 - Simple Crural Repair
 - 6% recurrence at 2 Yrs.

- 108 Patients (Group 1 = 54)
 Anatomical Recurrence Rate @ 6 Months
 (>2cm by UGI)
 12 Patients (24%) Primary Repair

Recurrence After Paraesophageal Hernia Repair in Series With Radiologic Follow-up

Table 2. Recurrence After Surgical Treatment of PEH in Series With Systematic Radiologic Control

<table>
<thead>
<tr>
<th>Source</th>
<th>No. (%) of Patients With Esophagogram</th>
<th>Recurrence, No. (%)</th>
<th>PEH Recurrence, No.</th>
<th>Sliding, No.</th>
<th>Symptoms, No. (%)</th>
<th>Mesh Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luostarinen et al.</td>
<td>19/22 (86)</td>
<td>8 (42)</td>
<td>4</td>
<td>4</td>
<td>7 (37)</td>
<td>±Pledged</td>
</tr>
<tr>
<td>Wu et al.</td>
<td>35/38 (92)</td>
<td>8 (23)</td>
<td>2</td>
<td>5</td>
<td>12 (34)</td>
<td>NA</td>
</tr>
<tr>
<td>Hashemi et al.</td>
<td>21/27 (78)</td>
<td>9 (43)</td>
<td>NA</td>
<td>NA</td>
<td>8 (38)</td>
<td>Pledged</td>
</tr>
<tr>
<td>Wiechmann et al.</td>
<td>44/60 (73)</td>
<td>3 (7)</td>
<td>3</td>
<td>0</td>
<td>44 (100)</td>
<td>NA</td>
</tr>
<tr>
<td>Khaitan et al.</td>
<td>15/25 (60)</td>
<td>6 (40)</td>
<td>1</td>
<td>5</td>
<td>8 (50)</td>
<td>Pledged</td>
</tr>
<tr>
<td>Jobe et al.</td>
<td>34/52 (65)</td>
<td>11 (32)</td>
<td>8</td>
<td>3</td>
<td>22 (65)</td>
<td>Pledged >4 cm</td>
</tr>
<tr>
<td>Mattar et al.</td>
<td>32/125 (26)</td>
<td>11 (34)</td>
<td>NA</td>
<td>NA</td>
<td>14 (44)</td>
<td>Pledged</td>
</tr>
<tr>
<td>Keidar and Szold</td>
<td>NA</td>
<td>21 (15)</td>
<td>0</td>
<td>5</td>
<td>13 (40)</td>
<td>NA</td>
</tr>
<tr>
<td>Diaz et al.</td>
<td>66/96 (69)</td>
<td>21 (32)</td>
<td>7</td>
<td>14</td>
<td>41 (62)</td>
<td>NA</td>
</tr>
<tr>
<td>Targarona et al.</td>
<td>30/37 (81)</td>
<td>6 (20)</td>
<td>1</td>
<td>5</td>
<td>15 (50)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: NA, not available; PEH, paraesophageal hernia.

7-42% recurrence rate with radiological f/u (but mainly Symptomatic patients studied.)

But is it really so high?

- Leuketich et al (Pittsburg) 2008
 - 187 patients
 - Large PEH (> 5 cm gastric tissue)
 - Minimum 5 yr f/u
 - 82% RADIOGRAPHIC f/u
 - Median f/u 77 months
 - 15% recurrence
 - Poor symptomatic correlation.
But is it really so high?

• Yano et al (Creighton) 2008
 – 41 Patients
 – Intra-thoracic stomach
 – 1 year f/u
 – 93% (38/41) RADIOGRAPHIC (> 1 cm)
 – 3/38 (8%) recurrence
 – 2 asymptomatic 1cm recurrence.
 – 1 large recurrence after a bout of retching requiring repair (primary repair Transthoracic).
 – 20% SE with Collis gastroplasty.
Conclusion # 1 & 2

• Primary crus closure does have a failure rate.

• Recurrence after PEH > Sliding HH.

• Range variable but not more than 10-15% on long term f/u (from experienced centers).

• Most are asymptomatic and picked only on radiographic study.
1. HH do recur. ? True Incidence
2. Most are asymptomatic and do not require repair.
3. Use of Mesh does not eliminate recurrence.
4. Mesh causes problems.
 a. Complications
 b. Difficulty in re-operative intervention.
5. All re-operative interventions are not for recurrent HH.
Recurrence rate with Mesh closure

- 551 Patients
 - Group 2 (N=176) July 2002 - onwards
 - Simple Crural Repair with polypropelene mesh reinforcement
 - 1.8% recurrence at 2 Yrs.

- 108 Patients (Group 2 = 54)
 - Anatomical Recurrence Rate @ 6 Months (>2cm by UGI)
 - 4 Patients (9%) Repair with SIS group.

References:
Recurrence rate with Mesh closure

Table 3. Results of the Use of Mesh for PEH Repair

<table>
<thead>
<tr>
<th>Source</th>
<th>No. (%)</th>
<th>Mean Stay, d</th>
<th>Mean Follow-up, mo</th>
<th>GI Tract Symptoms</th>
<th>Recurrence</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlson et al. 1998</td>
<td>44</td>
<td>20 (45)</td>
<td>1 (2)</td>
<td>12</td>
<td>52</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Laparoscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kusterer and Gilroy, 1993</td>
<td>6</td>
<td>1 (17)</td>
<td>0</td>
<td>4</td>
<td>8-22</td>
<td>0</td>
</tr>
<tr>
<td>Edelman et al., 1995</td>
<td>5</td>
<td>2 (40)</td>
<td>1 (20)</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fricker et al., 1998</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>8</td>
<td>NA</td>
</tr>
<tr>
<td>Geldof et al., 1995</td>
<td>10</td>
<td>2 (20)</td>
<td>NA</td>
<td>9</td>
<td>1 (10)</td>
<td>Pellet, SE + PCR + FP</td>
</tr>
<tr>
<td>Behrens and Schürkert, 1996</td>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>6</td>
<td>NA</td>
<td>Olay</td>
</tr>
<tr>
<td>Huntington, 1997</td>
<td>8</td>
<td>1 (12)</td>
<td>NA</td>
<td>8</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Paul et al., 1997</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>D</td>
</tr>
<tr>
<td>Frantzkis and Carlson, 1997</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Willems et al., 1997</td>
<td>30</td>
<td>8 (27)</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Wu et al., 1999</td>
<td>38</td>
<td>6 (16)</td>
<td>2 (5)</td>
<td>3</td>
<td>3</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Kiihara and Zocchi, 1996</td>
<td>27</td>
<td>1 (4)</td>
<td>3.8</td>
<td>1-5</td>
<td>8 (30)</td>
<td>0</td>
</tr>
<tr>
<td>Basso et al., 2000</td>
<td>67</td>
<td>3 (4)</td>
<td>3.5</td>
<td>22</td>
<td>6 (9)</td>
<td>0</td>
</tr>
<tr>
<td>Lambert and Huddart, 2001</td>
<td>7</td>
<td>1 (14)</td>
<td>0</td>
<td>NA</td>
<td>1 (14)</td>
<td>Olay</td>
</tr>
<tr>
<td>Meyer et al., 2002</td>
<td>10</td>
<td>1 (10)</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Casaccia et al., 2004</td>
<td>8</td>
<td>1 (12)</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Kamizono et al., 2002</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Ponsky et al., 2003</td>
<td>1</td>
<td>NA</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Champion and Rock, 2003</td>
<td>52</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>21 (40)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Geisler et al., 2003</td>
<td>9</td>
<td>0</td>
<td>1 (11)</td>
<td>NA</td>
<td>8</td>
<td>NA</td>
</tr>
<tr>
<td>Leeder et al., 2003</td>
<td>14</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
<td>46</td>
<td>2 (14)</td>
</tr>
<tr>
<td>Keidar and Szold, 2003</td>
<td>10</td>
<td>NA</td>
<td>0</td>
<td>3</td>
<td>56</td>
<td>NA</td>
</tr>
<tr>
<td>Grandjean et al., 2003</td>
<td>24</td>
<td>1 (4)</td>
<td>NA</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: ACR, anterior crural repair; CR, crural repair; FP, fundoplication; NA, not available; PCR, posterior crural repair; PEH, paraesophageal hernia; PTFE, polytene; SE, sac excision.
84 yr F 2 yrs. s/p HH repair with Prolene mesh
48 yr M, 1 yrs. s/p recurrent HH repair with Gortex mesh (from chest)
Conclusion # 3

- Use of Mesh for crus reinforcement decreases hiatus hernia recurrence
 - *Not eliminate it.*
 - *? 5% with use of prosthesis.*
1. HH do recur. ? True Incidence
2. Most are asymptomatic and do not require repair.
3. Use of Mesh does not eliminate recurrence.
4. Mesh causes problems.
 a. Complications
 b. Difficulty in re-operative intervention.
5. All re-operative interventions are not for recurrent HH.
Meshes cause problems

- Synthetic
- Bio-prosthesis
- Erosions/ perforations
- Adhesions/ Fibrosis
Prosthesis Related Complications

<table>
<thead>
<tr>
<th>Source</th>
<th>No. With Complication/Total No. (%)</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlson et al., 1998</td>
<td>1/44 (2.3)</td>
<td>Esophageal erosion 29 mo after mesh placement</td>
</tr>
<tr>
<td>Laparoscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edelman, 1995</td>
<td>1/5 (20.0)</td>
<td>Dysphagia and fibrosis after tension-free repair with mesh + FP + gastrostomy; reoperation for esophageal stenosis</td>
</tr>
<tr>
<td>Trus et al., 1997</td>
<td>1/76 (1.3)</td>
<td>Dysphagia, mesh extraction</td>
</tr>
<tr>
<td>Schauer et al., 1998</td>
<td>1/70 (1.4)</td>
<td>Late esophageal perforation (ischemia), mesh (PTFE) extraction</td>
</tr>
<tr>
<td>Kemppainen and Kiviluoto, 2000</td>
<td>NA</td>
<td>Cardiac tamponade secondary to mesh fixation with “tacker”</td>
</tr>
<tr>
<td>Peet et al., 2000</td>
<td>1/22 (4.5)</td>
<td>Dysphagia and adherences secondary to crural closure, reinforcement with Dacron strips</td>
</tr>
<tr>
<td>Baladas et al., 2000</td>
<td>1/734 (0.1)</td>
<td>Gastroesophageal fistula secondary to FP reinforced by Teflon pledgets</td>
</tr>
<tr>
<td>Arendt et al., 2000</td>
<td>NA</td>
<td>Dysphagia; transmural migration of Teflon pledgets into esophagus 9 y after FP</td>
</tr>
</tbody>
</table>
Mesh Complications after Prosthetic Reinforcement of the Hiatal Closure - A 28 Case Series

Rudolf J Stadlhuber, MD
Amr El Sherif, MD
Sumeet K Mittal, MD
Robert J Fitzgibbons Jr., MD
L Michael Brunt, MD
John G Hunter, MD
Tom R DeMeester, MD
Lee L Swanstrom, MD
C Daniel Smith, MD
Charles J Filipi, MD

Creighton University Medical School, Department of Surgery
SAGES 2008, Philadelphia
28 Patients

- Polypropylene: 12 patients
- PTFE: 8 patients
- Dual Mesh: 7 patients
- Bio Mesh: 1 patient
Treatment/ Intervention

- Open Mesh Excision: 2
- Esophagostomy: 1
- Esophagectomy: 6
- Partial Gastrectomy: 2
- Total Gastrectomy: 1
- Lap. Mesh Excision: 11
- No Operation: 5

7th Esophageal conference, Omaha, NE 2009
Personal experience #1

Left thoracotomy with laparotomy with proximal esopahgo-gastrectomy with RNY esopahgo-jejunostomy.

7th Esophageal conference, Omaha, NE 2009
Personal experience #2

54 Yr. F 8 months s/p repair of recurrent HH with Sandwich PTFE and Dual mesh (chest and abdomen)

Laparotomy, Diverting esophagostomy with subsequent Takedown, EGD with Stent placement (for stenosis)
If I get this case today I would do an esophagectomy
Personal experience # 3 (Bioprosthesis)

80 Yr old female underwent repair of intra-thoracic stomach with primary crus closure, SIS reinforcement, No Fundoplication

Unrelenting dysphagia: despite multiple dilations (> 3 months)
 Distal 1/3rd stricture

Esophagectomy with GPU.
 Stomach and esophagus fused to the hiatus.

Symptom free now.
Conclusion #4a

• Mesh erode into viscera
 – *Require excision and/or prolonged hospitalization*

• Mesh cause dense fibrosis leading to problems
 – *Dysphagia- unresponsive to dilations*
Re-operative intervention with previous mesh
Re-operative intervention with previous mesh

Asked to see 75 Yr. F with profound dysphagia 10 days post-op Laparoscopic PEH repair, Nissen and SIS crus reinforcement.

Contrast study showed Slipped/ Misplaced fundoplication.

Redo procedure: stomach fused to the hiatus, along with the Splenic hilum. NO RECURRENT HH !!!

Required takedown fundoplication, partial gastrectomy, Splenectomy, partial anterior wrap.
Conclusion #4b

• Prior use of Mesh make re-operative procedure technically challenging and even dangerous.
1. HH do recur. ? True Incidence
2. Most are asymptomatic and do not require repair.
3. Use of Mesh does not eliminate recurrence.
4. Mesh causes problems.
 a. Complications
 b. Difficulty in re-operative intervention.
5. All re-operative interventions are not for recurrent HH.
Causes of failure as identified during re-operative anti-reflux surgery

<table>
<thead>
<tr>
<th>Study</th>
<th>Journal</th>
<th>N</th>
<th>Hiatus Hernia</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byrne et al</td>
<td>BJS, 2005</td>
<td>118</td>
<td>48</td>
<td>41%</td>
</tr>
<tr>
<td>Ohnmacht et al</td>
<td>An of Thor S, 2006</td>
<td>126</td>
<td>59</td>
<td>48%</td>
</tr>
<tr>
<td>Awad et al</td>
<td>Surg. Endo. 2001</td>
<td>36</td>
<td>12</td>
<td>33%</td>
</tr>
<tr>
<td>Hinder et al</td>
<td>Arch. Of Surg 2009</td>
<td>47</td>
<td>31</td>
<td>67%</td>
</tr>
<tr>
<td>Rosemurgy et al</td>
<td>Am Surg, 2004</td>
<td>64</td>
<td>39</td>
<td>61%</td>
</tr>
<tr>
<td>Swanstrom et al</td>
<td>Arch. of Surg, 2007</td>
<td>176</td>
<td>73</td>
<td>42%</td>
</tr>
<tr>
<td>Smith, Hunter et al</td>
<td>Ann of Surg, 2005</td>
<td>289</td>
<td>70</td>
<td>51%</td>
</tr>
<tr>
<td>Mittal et al</td>
<td>Not published</td>
<td>102</td>
<td>70</td>
<td>69%</td>
</tr>
</tbody>
</table>
Even for acute re-operative intervention

Early Reoperation Following Laparoscopic Antireflux Surgery

Patrick Yau, MD, David I. Watson, MD, Peter G. Devitt, MS, Phillip A. Game, MBBS, Glyn G. Jamieson, MS, Adelaide, South Australia, Australia

<table>
<thead>
<tr>
<th>Indications for Early Reoperation</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute hiatus hernia</td>
<td>8</td>
</tr>
<tr>
<td>“Tight” Nissen fundoplication</td>
<td>8</td>
</tr>
<tr>
<td>“Tight” diaphragmatic hiatus</td>
<td>9</td>
</tr>
<tr>
<td>Recurrent reflux</td>
<td>1</td>
</tr>
<tr>
<td>Postoperative haemorrhage</td>
<td>3</td>
</tr>
<tr>
<td>Coeliac and superior mesenteric artery thrombosis</td>
<td>1</td>
</tr>
</tbody>
</table>

759 patients
30 early re-operations
27% for acute herniation
Conclusion # 5

- Roughly 50-60% of failures requiring re-operative anti-reflux surgery can be attributed to recurrent hiatus hernia.

- In most series only 4-6% of own patients require re-operative intervention.
 - Hunter/Smith, Filipi, Mittal, Swanstrom, Madan/ Pelligrini

- 2-3% of patients having surgery at experienced centers would require re-operative intervention attributable to cruz failure.
Summary

- Primary anti-reflux surgery does fail and operative re-intervention is needed.
 - Most recurrent HH small and do not require operative re-intervention
 - 50% of failures not because of crus failure.
 - Short esophagus: probably underestimated.
- Mesh decreases rate of crus failure.
 - But will not decrease other causes of failure.
 - Recurrence is not ZERO.
Summary

• **Synthetic Mesh can erode into the viscera.**
 - *Incidence not known.*
 - *Re-operative intervention with erosions usually needed and not pretty.*
 - *Non-erosion cases: re-operative intervention difficult not impossible with PTFE mesh.*

• **Biological Mesh**
 - *If erode should be able to manage conservatively.*
 - *Hiatus Stenosis is known but underappreciated.*
 - *Re-operative intervention is difficult: with possible need for resection: fusion of stomach to the hiatus.*
Lessons learned

• **Primary crus closure: even for large defects**
 – *Preserve diaphragmatic fascia.*
 – *Address the short esophagus.*

• **Use mesh very very selectively**
 – *Only if crus tears: fascia not preserved*
 – *? For recurrent large HH if primary surgery was done well*
 – *? Steroids*

• **Use absorbable mesh ?**
 – *Make sure you do a good wrap!!*
 – *Hope you do not have to go back*